On the transport operator with a linearized kernel

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L793
(http://iopscience.iop.org/0305-4470/26/17/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:29

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the transport operator with a linearized kernel

Nassar H S Haidar
Department of Mathematics, American University of Beirut, 850 Third Avenue, 18 th Floor, New York, NY 10022, USA, and Lebanese NCSR Nuclear Research Center, Lebanon

Received 2 June 1993

Abstract

Based on a discrete-ordinate approach, we show that the parametrized spectral continuum of the neutron transport operator

$$
T=\frac{1}{\mu}-\frac{c}{\mu} \int_{-1}^{1} \sum_{x}\left(\mu^{\prime} \rightarrow \mu\right) \mathrm{d} \mu^{\prime}
$$

is pseudo-continuous. The dispersion relation for its pseudo-continuities depends on both c and the discrete μ.

In [1], the author reported that the eigenvalue continuum of the neutron transport operator could in principle be pointwise 'perforated' or, i.e., be pseudo-continuous. The supporting Fredholm-based theory and the preliminary conclusions derived from it in [1], have been restricted only to a narrow ray $\{-\varepsilon \leqslant \mu \leqslant \varepsilon ; \alpha=0\}$, representing the medial ($\alpha=0$) discrete ordinate [2] of the eigenfunction.

In general, however, and over any narrow ray, the neutron scattering Kernel \sum_{s} ($\mu^{\prime} \rightarrow \mu$) could always be linearized viz

$$
\begin{equation*}
\sum_{s}\left(\mu^{\prime} \rightarrow \mu\right)=\frac{1}{2}\left[1+b(\alpha) \dot{\mu} \mu^{\prime}\right] ; \mu, \mu^{\prime} \in[\alpha-\dot{\varepsilon}, \alpha+\varepsilon] \tag{1}
\end{equation*}
$$

where $\varepsilon>0$ is a small enough real number, $\alpha \in[-1+\varepsilon, 1-\varepsilon], b(\alpha) \in R$ and R is the set of all reals.

Here we generalize this theory [1] that addresses the medial discrete ordinate, to any discrete ordinate $\{\alpha-\varepsilon \leqslant \mu \leqslant \alpha+\varepsilon ;-1+\varepsilon \leqslant \alpha \leqslant 1-\varepsilon\}$ of the eigenfunction. This will be done however in a way leading only to almost bounded singular kernels and not to the analytically continued kernels, applied, e.g., in the entirely different works of Busbridge [3] or Mullikin [4].

Recall the following eigenvalue problem, associated with the separation of variables solution to the azimuthally symmetric one-speed neutron transport equation [1, 2, 5] in plane geometry.

$$
\begin{equation*}
T f=\frac{1}{\mu} f(\mu)-\frac{c}{\mu} \int_{-1}^{1} \sum_{s}\left(\mu^{\prime} \rightarrow \mu\right) f\left(\mu^{\prime}\right) \mathrm{d} \mu^{\prime}=\frac{1}{v} f \tag{2}
\end{equation*}
$$

Let us denote in what follows by v_{i} 's the discrete inverse eigenvalues of the nonselfadjoint singular transport operator

$$
\begin{equation*}
T=\frac{1}{\mu}-\frac{c}{\mu} \int_{-1}^{1} \sum_{s}\left(\mu^{\prime} \rightarrow \mu\right) \mathrm{d} \mu^{\prime} \tag{3}
\end{equation*}
$$

and by $f_{i}(\mu)$ the associated eigenfunctions, which are also eigenfunctions of

$$
\begin{equation*}
f(\mu)=\frac{c v}{(v-\mu)} \int_{-1}^{1} \sum_{s}\left(\mu^{\prime} \rightarrow \mu\right) f\left(\mu^{\prime}\right) \mathrm{d} \mu^{\prime} . \tag{4}
\end{equation*}
$$

Moreover, it is well known (see e.g. [1]) that in addition to a discrete part, the spectrum of this operator contains a v-continuum of inverse eigenvalues, and we denote by $f_{v}(\mu)$ the associated 'eigenfunctions' or spectral amplitudes.

Consider now (1) in (4) to write the equivalent eigenvalue problem

$$
\begin{align*}
& f_{\alpha}(\mu)=\frac{c}{2} v \int_{\alpha-\varepsilon}^{\alpha+\varepsilon} \frac{\left[1+b(\alpha) \mu \mu^{\prime}\right]}{(v-\mu)} f_{a}\left(\mu^{\prime}\right) \mathrm{d} \mu^{\prime}+\frac{c}{2} v \frac{A(v, \mu)}{(v-\mu)} \tag{5}\\
& \mu, \mu^{\prime} \in[\alpha-\varepsilon, \alpha+\varepsilon] \quad \alpha \in[-1+\varepsilon, 1-\varepsilon]
\end{align*}
$$

in which $f_{\alpha, \mu}(\mu)$ or $f_{\alpha}(\mu)$ is an eigenfunction and
$A(\alpha, \mu)=2 \int_{-1}^{1} \sum_{s}\left(\mu^{\prime} \rightarrow \mu\right) f\left(\mu^{\prime}\right) \mathrm{d} \mu^{\prime}-2 \int_{\alpha-\varepsilon}^{\alpha+\varepsilon}\left[1+b(\alpha) \mu \mu^{\prime}\right] f_{\alpha}\left(\mu^{\prime}\right) \mathrm{d} \mu^{\prime}$
is a parameter of the non-homogeneous term that happens to depend also on the v inverse eigenvalue. For sufficiently small ε however, $A(\alpha, \mu)$ may be replaced by the averaged parameter

$$
\begin{equation*}
A_{\alpha}=2 \int_{-1}^{1} \sum_{s}\left(\mu^{\prime} \rightarrow \alpha\right) f\left(\mu^{\prime}\right) \mathrm{d} \mu^{\prime}-2 \int_{\alpha-\varepsilon}^{\alpha+\varepsilon}\left[1+b(\alpha) \alpha \mu^{\prime}\right] f_{\alpha}\left(\mu^{\prime}\right) \mathrm{d} \mu^{\prime} \tag{7}
\end{equation*}
$$

which is only formally independent of μ. It should be pointed out moreover, that this A_{a} which is quite different from Case's [5] expansion coefficient, turns out to represent a certain anisotropic generalization of the coefficient in a Haidar's theorem [6] on a Stieltiies integral expansion of the singular solution for the isotropic neutron transport equation.

Let us utilize then the substitutions $\mu=\eta+\alpha$ and $\lambda=\nu^{-1}$ in (5) to rewrite it in the Fredholm equation-like form

$$
\begin{equation*}
f_{\alpha}(\eta)=h(\eta, \hat{\lambda})+\lambda \int_{-\varepsilon}^{s} k\left(\eta, \eta^{\prime}, \lambda\right) f_{\alpha}\left(\eta^{\prime}\right) \mathrm{d} \eta^{\prime} \tag{8}
\end{equation*}
$$

in which

$$
\begin{equation*}
h(\eta, \lambda)=\frac{c}{2} \frac{A_{\alpha}}{[1-\lambda(\eta+\alpha)]} \tag{9}
\end{equation*}
$$

and the non-symmetric singular kernel

$$
\begin{equation*}
k\left(\eta, \eta^{\prime}, \lambda\right)=\frac{c}{2} \frac{1+b(\alpha)\left[\eta \eta^{\prime}+\alpha\left(\eta+\eta^{\prime}\right)+\alpha^{2}\right]}{\lambda[1-\lambda(\eta+\alpha)]} \tag{10}
\end{equation*}
$$

may become bounded,

$$
\begin{equation*}
\|K\|^{2}=\int_{-\varepsilon}^{\varepsilon} \int_{-\varepsilon}^{\varepsilon} k^{2}\left(\eta, \eta^{\prime}, \lambda\right) \mathrm{d} \eta \mathrm{~d} \eta^{\prime}<1 \tag{11}
\end{equation*}
$$

in a Cauchy's principal value, P, sense only for small enough ε.
Theorem. Let ε be sufficiently small so as $A(\alpha, \mu)=A_{\alpha}$ and $\|K\|^{2}<1$. Then for any discrete ordinate of the spectral amplitude of the T-operator there holds

$$
\begin{align*}
& f_{\alpha}(\mu)=\frac{c}{2} A_{\alpha}\left[1+\frac{S_{\alpha}(v, \mu)}{H_{\alpha}(v)}\right] P \frac{v}{(v-\mu)} \tag{12}\\
& \mu \in[\alpha-\varepsilon, \alpha+\varepsilon] \quad \alpha \in[-1+\varepsilon, 1-\varepsilon] \quad v \in[-1,1]
\end{align*}
$$

where

$$
\begin{align*}
& S_{\alpha}(v, \mu)=c v\left\{[1+b(\alpha) v \mu] \tanh ^{-1}\left(\frac{\varepsilon}{v-\alpha}\right)-\mu \varepsilon b(\alpha)\right\} \tag{13}\\
& H_{\alpha}(v)=1-c v\left\{(2 \alpha-3 v) \varepsilon b(\alpha)+\left[1+b(\alpha) v^{2}\right] \tanh ^{-1}\left(\frac{\varepsilon}{v-\alpha}\right)\right\} \tag{14}
\end{align*}
$$

Proof. For such η, we can choose a suitable Banach Space B, containing h as an element and can interpret K as an operator mapping into B itself. Equation (8) may then be solved analytically [7] as a linear non-homogeneous second kind Fredholm integral equation in the form

$$
\begin{equation*}
f_{\alpha, \lambda}(\eta)=h(\eta, \lambda)+\lambda \int_{-\varepsilon}^{\varepsilon} R(\eta, \tau, \lambda) h(\eta \tau) \mathrm{d} \tau \tag{15}
\end{equation*}
$$

where in the resolvant

$$
\begin{aligned}
& R(\eta, \tau, \lambda)=D(\eta, \tau, \lambda) / D(\lambda) \\
& D(\eta, \tau, \lambda)=K(\eta, \tau, \lambda)+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} B_{n}(\eta, \tau, \lambda) \lambda^{n} \\
& D(\lambda)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} C_{n} \lambda^{n} \\
& C_{n}=\int_{-\varepsilon}^{\varepsilon} B_{n-1}(s, s, \lambda) \mathrm{d} s \\
& B_{n}(\eta, \tau, \lambda)=C_{n} K(\eta, \tau, \lambda)-n \int_{-\varepsilon}^{\varepsilon} K(\eta, s, \lambda) B_{n-1}(s, \tau, \lambda) \mathrm{d} s
\end{aligned}
$$

Since $C_{0}=1$ and $B_{0}(\eta, \tau, \lambda)=K(\eta, \tau, \lambda)$, then on one hand we have
$B_{1}(\eta, \tau, \lambda)=K(\eta, \tau, \lambda) \int_{-\varepsilon}^{\varepsilon} B_{0}(s, s, \lambda) \mathrm{d} s-\int_{-\varepsilon}^{\varepsilon} K(\eta, s, \lambda) B_{0}(s, \tau, \lambda) \mathrm{d} s$.

Moreover, for sufficiently small ε, it is possible to assume $\tau=0$ in the right-hand side of (16) to establish that $B_{1}(\eta, \tau, \lambda) \approx 0$. On the other hand,

$$
C_{1}=\int_{-\varepsilon}^{\varepsilon} K(s, s, \lambda) \mathrm{d} s=\frac{c}{\lambda^{2}}\left[1+\frac{b(\alpha)}{\lambda^{2}}\right] \tanh ^{-1}\left(\frac{\lambda \varepsilon}{1-\alpha \varepsilon}\right)+2 \alpha b(\alpha) \frac{\varepsilon}{\lambda^{2}}-3 c b(\alpha) \frac{\varepsilon}{\lambda^{3}} .
$$

Now since $B_{n}(\eta, \tau, \lambda)=0$ and $C_{n}=0 \forall n>1$, then

$$
\begin{equation*}
R(\eta, \tau, \tau) \approx K(\eta, \tau, \lambda) /\left(1-C_{1} \lambda\right) \tag{17}
\end{equation*}
$$

and the accuracy of this approximation in higher, the smaller is ε.
The required results follow by consideration of (17) in (15), analytical integration and back substitution of $\eta=\mu-\alpha$.

Corollary. If $\Sigma_{s}\left(\mu^{\prime} \rightarrow \mu\right)$ in T is linearized according to (1.1), then the inverse eigenvalue v-continuurn of this operator is pseudo-continuous at the roots of
$H_{\alpha}(v)=1-c v\left\{(2 \alpha-3 v) \varepsilon b(\alpha)+\left[1+b(\alpha) v^{2}\right] \tanh ^{-1}\left(\frac{\varepsilon}{v-\alpha}\right)\right\}=0$.
This corollary, which is the main result of this communication, relates the number and locations of these pseudo-continuities to such decisive factors as the parametrized discrete ordinate $\mu=\alpha$, the corresponding linear anisotropic scattering coefficient $b(\alpha)$ and the neutron yield $c>0$. Note however that the dispersion relation (18) may possibly have real roots only for values of $b(\alpha)$ and/or c that are large enough to be at least of the order of ε^{-1}.

Finally we point out that the effect of the presence of the reported pseudo-continuities over $[-1,1]$ on possible exclusion of the $\mu=v$ singularities in $\|K\|^{2}$ appears to remain as a posing interesting question.

References

[1] Haidar N H S 1991 Lett. Math. Phys. 217
[2] Bell G I and Glasstone S 1970 Nuclear Reactor Theory (New York: Van Nostrand Reinhold)
[3] Busbridge I W 1955 Astron. J. 122327
[4] Mullikin T W 1964 Nonlinear Integral Equations (Madison, WI: University of Wisconsin Press)
[5] Case K M and Zweifel P M 1967 Linear Transport Theory (Reading, MA: Addison-Wesley)
[6] Haidar N H S 1990 J. Austral. Math. Soc. B 32223
[7] Goldberg M (ed) 1978 Solution Methods for Integral Equations (New York: Plenum Press)

