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On the transport operator with a linearized kernel
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Abstract. Based on a dlscrete-ordmatc approach we show that the parametrized spectral
continzum of the neutron transport operator

1 ¢ o
T=————f Z W op)dy
B opJ %

is pseudo-continuous. The dlSpchlon relation for its pseudo-contmmt:es depends on both
¢ and the discrete u.

In [1], the author reported that the eigenvalue continunm of the neutron transport
operator could in principle be pointwise ‘perforated’ or, i.., be pseudo-continuous. The
supporting Fredholm-based theory and the preliminary conclusions derived from it in
[1], have been restricted only to a narrow ray {—-g<,u<s a =0}, representing the
medial (& =0) discrete ordinate [2] of the eigenfunction.

. In general, however, and over any narrow ray, the neutron scattering Kernel 3
(' =) could always be linearized viz ‘

T @om =@ ) ele=satd )

where £> 0 is a small enough real number, as[—1+ &, 1—¢], #(a)eR and R is the set
of all reals. '

Here we generalize this theory [1] that addresses the medial discrete ordinate, to
any discrete ordinate {¢ —e<pu<a+e; —1+ega<1— &} of the eigenfunction. This
will be done however in a way leading only to almost bounded singular kernels and not
to the analytically continued kernels, applied, e.g., in the entirely different works of
Busbridge [3] or Mullikin [4].

Recall the following eigenvalue problem, associated with the separation of variables
solution to the azimuthally symmetric one-speed neutron transport equation [1, 2, 5] in
plane geometry.
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Let us denote in what follows by v/'s the discrete inverse eigenvalues of the non-
selfadjoint singular transport operator

1

1 ¢ .
T=———=1 Y u'->u)du G
B g s
and by fi(¢r) the associated eigenfunctions, which are also eigenfunctions of
1
cv ,
fG)= f 2 (- () dp'. @
(v—m)J 5

Moreover, it is well known (see e.g. [1]) that in addition to a discrete part, the spectrum
of this operator contains a v-continuum of inverse eigenvalues, and we denote by f.(1)
the associated ‘eigenfunctions’ or spectral amplitudes.

Consider now (1} in (4) to write the equivalent cigenvalue problem

e [T [+dedup] ., ¢ A(v, p)
w() == RO ) dp+ S v 2B
Foli) va_s oy T du v Tk .
) B, pela—g, a+g] aec[-l+g 1—¢]
in which f () or f.(u) is an eigenfunction and
1 e+ &
Ala, u)=2 j X (W-p)f(p) dp' =2 J [1+b(a)ppl fu(p’) dp’ (6)
-t ,

g

is a parameter of the non-homogeneous term that happens to depend also on the v-
inverse eigenvalue. For sufficiently small & however, A(a, u) may be replaced by the
averaged parameter

Ae=2 J X W'—a)f () dp' =2 J. N +b(e)aplflu) du’  (7)

a—&

which is only formally independent of p. It should be pointed out moreover, that this
A, which is quite different from Case’s [5] expansion coefficient, turns out to represent
a certain anisotropic generalization of the coefficient in a Haidar’s theorem [6] on a
Sticltjies integral expansion of the singular solution for the isotropic neutron transport
equation.

Let us utilize then the substitutions 4 =7+« and A=v™" in (5) to rewrite it in the
Fredholm equation-like form

fu(my=h(n, D)+ 4 I k(n, ', Dfa(1) dn’ (3

-5
in which

c A,
A(n, Ay=—

2[1-A(n+a)l @)

and the non-symmetric singular kernel
_c 1+b(a)[nn' +a(n+ 7} +a’]

K =g = s - (10)
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may become bounded,
IIK||2=I f K(m, 1, A) dn d' <1

in a Cauchy’s principal value, P, sense only for small enough &.

L795

(11)

Theorem. Let ¢ be sufficiently small so as 4(e, p)=A4, and [K|*<1. Then for any

discrete ordinate of the spectral amplitude of the T-operator there holds

g =£A¢[1+S“(V’#)]P v
J=3 Hv) | (v—p)

uele—g, a+ g ae[—1+¢g, 1—¢] ve[—1, 1]

where

Sa(v, p) = cv{[l+b(a)v_u] tanh™ (Vg ) ,uab(a)}

H,(v)=1 —cv{(2a —3v)eb(a)+[1+b(a)v] tanh"(nga)}_

(12)

(13}

(14}

Proof. For such 1, we can choose a suitable Banach Space B, containing # as an element
and can interpret K as an operator mapping into B itself. Equation (8) may then be
solved analytlca]]y [7] as a linear non-homogeneous second kmd Fredholm integral

equation in the form
Jar(m)=h(ip, )+ 4 J R(n, 7, h(n 7} dv

where in the resolvant
R(n, z, )=D(n, t, 1}/D()
1)"

D(q, r, )=K(7, t, )+ Z By(n, 7, HA"
DOY=1+ z ) CA

CH=I Bn-—l(s: ¥ '1’) ds

et

Ba(n, 7, )= C.K(n, 7, A)—n f R(n, 5, ABa_r(s, 7, A) ds.

Since Co=1 and By(n, 7, A)=K(1n, 7, A), then on one hand we have

Bl(n: T, 3-)=K(TL _1:’ ﬁ’) ,[ BD(S: 8, ’1') dS—J- K(n! 5, H')-Bf)(s: T, ’1') dS

(1%)

(16)
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Moreover, for sufficiently small &, it is possible to assume 7=0 in the right-hand side
of (16) to establish that By(7, 7, 1) 0. On the other hand,

b(“)]t nh'( Ra )+2 ab(@) 5= 3cb(a) 5

C, =J: Kis, s, A) ds= [ PP

Now since B,(n, 7, A)=0and C,=0V¥n>1, then
R(n, 7, D)= K(7, 7, 2)/(1-CiA) (17}

and the accuracy of this approximation in higher, the smaller is &
The required results follow by consideration of (17) in (15), analytical integration
and back substitution of =g —a. O

Corollary. If Z, (¢’ —y) in T is linearized according to (1.1), then the inverse eigenvalue
v~continuum of this operator is pseudo-continuous at the roots of

Hv)=1—cv {(Za —3v)eb(a) + {1 +B(a)v?] tanh“'(v—fa-)}=0. (18) O

This corollary, which is the main result of this communication, relates the number
and locations of these pseudo-continuities to such decisive factors as the parametrized
discrete ordinate g = a, the corresponding linear anisotropic scattering coefficient b(a)
and the neutron yield ¢> 0. Note however that the dispersion relation (18) may possibly
bave real roots only for values of () and/or ¢ that are large enough to be at least of
the order of £7\.

Finally we point out that the effect of the presence of the reported pseudo-continui-
ties over [—1, 1] on possible exclusion of the g = v singularities in [K|* appears to
remain as a posing interesting question.
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